A Mind for Madness

Musings on art, philosophy, mathematics, and physics

More on Primality

3 Comments


I want to wrap up some loose ends on the greatness of prime ideals before moving on in the localization theme. So. Recall that we formed the ring of quotients just like you would form the field of quotients. Only this time your “denominator” can be an arbitrary multiplicative set and this construction only gets us a ring. Moreover, this ring is not necessarily local. If we do the construction on a ring R with and the multiplicative set R\setminus P where P is a prime ideal, then we do get a local ring and we call this the localization.

Definition. Unique Factorization Domain (UFD): An integral domain in which every non-zero non-unit element can be written as a product of primes. (Note that there are equivalent definitions other than this one).

Quick property: Every irreducible element is prime.

Thus, it is instructive to look at some properties of prime ideals. First off, let’s look at the special case of UFD’s. It turns out that if R is a UFD, then for a multiplicative set S, S^{-1}R is also a UFD. This mostly has to do with the fact that R\hookrightarrow S^{-1}R is an embedding and anything in S^{-1}R is associate to something in R. This makes a nice little exercise for the reader.

So what’s so special about prime ideals in UFD’s? Well every nonzero prime ideal contains a prime element.

Proof: Suppose P\neq 0 and P prime. Then there exists a\in P, a\neq 0 such that a=up_1\cdots p_n where u a unit and p_i prime. Thus u\notin P. But this means that p_1\cdots p_n\in P and since it is prime we have some p_j\in P.

Theorem: If R is not a PID, and P an ideal which is maximal with respect to the property of not being principal, then P is prime (and will always exist).

Sketch of existence: Zorn’s Lemma. The proof of this contains lots of nitty gritty element-wise computation and a weird trick, so I don’t see it as beneficial. What is beneficial is that we get this great corollary: A UFD is a PID if and only if every nonzero prime ideal is maximal.

I’ve been kind of stingy on the examples, so I’ll leave you with a pretty common example of a ring of fractions. These are usually called dyadic rational numbers. Take your ring to be \mathbb{Z}. Then take your multiplicative set to be S=\{1, 2, 2^2, 2^3, \ldots\}. Now S^{-1}\mathbb{Z} are just the rational numbers with denominator a power of 2.

More generally we can form the p-adic integers (although that term is laden with many meanings, so I hesitate to actually use it). Let R=\times_{i=1}^\infty \mathbb{Z}/p^i. Where we have the restriction a\in R iff a=(a_1, a_2, \ldots ) satisfies a_i\cong a_{i+1} \mod p^i. So  elements of the ring are sequences. (Note \mathbb{Z} embeds naturally since i\mapsto (i, i, i, \ldots) satisfies that relation). This is a ring with no zero divisors, so we can take it to be the multiplicative set and we get the field of fractions \mathbb{Q}_p. The multiplicative group has a nice breakdown as \mathbb{Q}_p^{\times}\cong p^{\mathbb{Z}}\times \mathbb{Z}_p^{\times}.

Next time: Why Noetherian is important. How primality relates to it. And possibly another example.

About these ads

Author: hilbertthm90

I write about math, philosophy, literature, music, science, computer science, gaming or whatever strikes my fancy that day.

3 thoughts on “More on Primality

  1. And also this was my 100th post!

  2. Wow, having read all the posts it definitely doesn’t feel like 100. They just kind of whizzed by.

  3. Pingback: Spec? You mean like glasses? « A Mind for Madness

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 182 other followers