A Mind for Madness

Musings on art, philosophy, mathematics, and physics

Fourier Series Theorem

1 Comment


I had many things that I wanted to talk about, but when I read this theorem, it was so shocking that I just had to post it. Now from a general intuition standpoint, you might think this theorem to be quite natural. But remember, most of us have been trained to think Fourier series are extremely nicely behaved. In fact, if I had read the wikipedia article when I was learning Fourier series years ago, I wouldn’t be surprised as much since under Divergence, it tells us this stuff.

So secretly we always are working with L^2(T), or square-integrable 2\pi-periodic functions. When we think in this way, we have the Fourier series of f at x given by the partial sums s_n(f; x)=\frac{1}{2\pi}\int_{-\pi}^\pi f(t)D_n(x-t)dt where D_n(t)=\sum_{k=-n}^n e^{ikt}. It turns out quite simply that in L^2-norm the partial sums converge to f quite quickly. This nice convergence tricks us into thinking that we will have nice convergence all the time.

So if we switch to just continuous 2\pi-periodic functions (which is a dense subset of L^2(T)), do we get something as simple as point-wise convergence (it would surely be too much to ask for uniform convergence)? Well, from a common measure theory theorem, since the sequence converges in L^2-norm we have a subsequence converging point-wise almost everywhere. But this leaves much room for error. How much error you ask?

It turns out that there is is a set E\subset C(T) which is a dense G_\delta in C(T) which has the following property: For each f\in E, the set Q_f=\{x: s^*(f; x)=\infty\} is a dense G_\delta in \mathbb{R}. Note that s^*(f;x)=sup_n |s_n(f;x)|.

This is pretty rough considering it means in non-technical terms that continuous functions are completely filled with functions for which the points where the Fourier series behaves badly is almost everywhere. Also, note that a “dense G_\delta” is uncountable (nice little topological proof if you want to try it), so this isn’t like some minimally dense set we’re talking about.

I was going to prove the theorem, but now I don’t think I will because, there may be at best one person that has made it this far. If interested drop a comment and I’ll gladly add the proof here, though. I just need to make sure there is an interest before going forth with it.

We should note that it doesn’t take much to correct the problems stated here. If we just make sure that our function is Lipschitz of some order, then we have a convergent Fourier series.

About these ads

Author: hilbertthm90

I write about math, philosophy, literature, music, science, computer science, gaming or whatever strikes my fancy that day.

One thought on “Fourier Series Theorem

  1. 1. Our discussion today prompted me to search for algebraic geometry type things… but I wanted to start from the beginning… so I’ve just been reading this whole blog.

    2. Is this by way of Baire’s theorem? Though I’m not sure where the G_\delta part would come from.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 172 other followers